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A new method, called the tensor viscosity method, is described for differencing the 
convective terms in multidimensional numerical fluid dynamics. The method is the proper 
generalization to two or three dimensions of interpolated donor cell differencing in one 
dimension, and is designed to achieve numerical stability with minimal numerical damping. 
It is a single-step method that is distinguished by simplicity and ease of implementation, 
even in the case of an arbitrary non-rectangular mesh. It should therefore be useful in 
finite-element as well as finite-difference formulations. 

I. INTRODUCTION 

In numerical fluid dynamics, the manner in which the convective terms are spatially 
differenced requires special attention. As is well known, when these terms are evaluated 
explicitly (i.e., at the previous time level) centered spatial differencing is uncon- 
ditionally unstable [I, 21. This instability can be traced to a destabilizing truncation 
error proportional to the square of the fluid velocity [3]. Various methods for circum- 
venting this problem have been used over the years. The simplest and least accurate 
procedure is to simply add artificial diffusive terms to the equations, with their coeffi- 
cients sufficiently large to ensure numerical stability. A better but still inaccurate 
procedure is to use donor cell or upwind differencing [I, 2,4]. These methods 
are too inaccurate for many problems because of the unphysical diffusion or 
smearing that attends their use. 

A much better procedure is the use of a weighted average of centered and donor cell 
differencing. The fraction of donor cell differencing needed for stability is approxi- 
mately the fraction of a cell width traversed by the fluid in one timestep. This fraction 
is ordinarily considerably less than unity, and the unphysical diffusion is consequently 
greatly reduced. However, if the fluid velocity varies greatly throughout the region 
of computation, the use of a single weighting factor everywhere will still result in 
unnecessarily large numerical smearing in regions where the velocity is relatively 
small. The obvious way to avoid this disadvantage is to locally set the weighting factor 
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in terms of the local fluid velocity. This procedure is referred to as interpolated donor 
cell differencing [5], and in one dimension it is equivalent to the local cancellation of 
the destabilizing truncation error mentioned above. 

Unfortunately, the naive extension of interpolated donor cell differencing to two 
dimensions is unstable; this follows from its equivalence to the scheme given in Eq. (39) 
of Ref. [6], or Eq. (5) of Ref. [7]. The difficulty is due to the fact that the destabilizing 
truncation error in two dimensions contains an xy cross term for which interpolated 
donor cell differencing does not compensate. This cross term is implicitly cancelled 
by the well-known second-order two-step methods, such as the Lax-WendrolT and 
MacCormack methods [I, 21. These methods, however, also introduce into the 
difference scheme various higher-order cross terms whose significance is unclear. 
A simpler way around the difficulty is to compensate directly, in a single step, for the 
complete two-dimensional form of the destabilizing truncation error, including the 
cross term. The compensating term has the form of a viscous term in which the vis- 
cosity coefficient is a tensor rather than a scalar; we therefore refer to this method 
as the tensor viscosity (TV) method. It is the proper generalization to two (or three) 
dimensions of interpolated donor cell differencing in one dimension. 

The TV method is simple and easy to implement, even in an arbitrary nonrec- 
tangular mesh or in orthogonal curvilinear coordinates. This is a consequence of the 
fact that the tensor viscosity term is a spatial difference approximation to a differential 
term of tensor-invariant form, which can therefore be spatially differenced in the same 
manner as the other terms in the equations. This feature should make the method 
useful in finite-element as well as finite-difference contexts. The TV method has the 
further advantage that its form is the same in three dimensions as in two dimensions. 

We emphasize that the present method is independent of and unrelated to the 
various earlier numerical methods with which the term “tensor viscosity” has been 
associated [8]. These methods were used primarily for shock smearing [9], usually 
within a Lagrangian context. The present method is simply a way of stabilizing 
Eulerian convection, and has nothing to do with shock smearing. The method is not 
needed and should not be used in Lagrangian calculations, where there is no con- 
vection with respect to the finite difference mesh. 

II. DERIVATION OF THE TENSOR VISCOSITY TERM 

Consider the continuity equation in either two or three dimensions, 

g + v . (pu) = 0, (1) 

where p is the mass density and u is the fluid velocity vector. As is well known, forward- 
time centered-space (FTCS) differencing of Eq. (1) is unconditionally unstable [I, 21. 
This instability arises because the term V * (pu) is evaluated at an earlier time than 
the term ap/&; if both terms are evaluated at the same time level (at least to second 
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order in At) a stable scheme results [1,2]. Thus it is clear that the FT part of the 
FTCS scheme, and not the CS part, is the source of the trouble. This suggests that 
further insight can be gained by considering the temporal differencing separately 
from the spatial differencing. Accordingly, we leave the spatial variables continuous 
and discretize only the time to obtain the FT temporal difference approximation 
to Eq. (11, 

P n+l- n 

At p + v . (pu)” = 0. 

Here At is the time increment and superscript n is the time level, so that t = n At. 
Let us now examine the truncation errors of Eq. (2) [3]. Using Eq. (l), we find 

that 

P n+1 - 
P" = 

At i 1 
!$ n + ; At v . F’” + U(At2), 

where 

F = UU a vp + pUv . U - p a@. (4) 

The FT difference Eq. (2) is therefore equivalent to the equation 

aP ’ V.(pu) = -;Atv.F+@(At2), 
ZT (5) 

evaluated at time level IZ. Equation (5) may be considered to be the differential equation 
that is effectively solved by the use of Eq. (2). Notice that l/2 At F has the significance 
of an additional mass flux. 

The first term in F is the one of crucial importance. This term gives rise to an arti- 
ficial diffusional mass flux in which the diffusivity is replaced by the dyadic -I /2 At uu. 
The negative sign in this expression implies that Eq. (5) will exhibit unbounded 
instabilities [3]. The other terms in F do not appear to be susceptible to similar inter- 
pretations. Moreover, these terms are proportional to derivatives of u, while the 
instability of present concern occurs even when u is independent of position and time 
[1, 21. One therefore concludes that these terms are not essential to the basic FT 
instability. 

Having thus identified the first term in F as the cause of the instability, it is a simple 
matter to devise an alternative numerical scheme which explicitly compensates for 
this term. To do so, we simply incorporate the troublesome term into the difference 
approximation to (ap/at)n, in the manner dictated by Eqs. (3) and (4). That is, we 
approximate (ap/at)n by the difference expression 

P n+1 _ P" 
At - ; At v . (uu . vp>“. (6) 
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This is a first-order approximation overall, but is of second order in the effect of 
essential importance. The difference scheme then becomes, instead of Eq. (2), 

P 
llfl _ n 

At 
p + v * (pu)” = v * (1 * VP)‘&, (7) 

where we have introduced the “tensor viscosity” T, defined by 

T = 4 Atuu. (8) 

Clearly T is a symmetric tensor. Note that, in spite of the appearance of Eq. (7), 
the term involving T is not to be thought of as an additional artificial term, but rather 
as part of the difference approximation to (ap/at)n. 

It is clear that the preceding considerations apply equally well to the convective 
transport of an arbitrary quantity Q satisfying the equation 

zg + v * (Qu) = SQ , (9) 

where Q is a volumetric density (quantity per unit volume) and So represents the 
non-convective contributions to 2Q/Zt. The additional truncation errors that arise 
when So # 0 are again not of importance to the basic FT instability and hence there 
is no need to compensate for them. We therefore temporally difference Eq. (9) as 

q-2 + v . (Qu)~ z So + V . (T . VQ)“. 

The time level at which So is evaluated is not shown because it is immaterial for present 
purposes; it might be either n or H + I. The conservation equations of fluid dynamics 
are all of the form of Eq. (9), and hence can all be temporally differenced according 
to Eq. (10). Note that T is the same for all quantities Q. 

To complete the difference scheme, it is merely necessary to replace the spatial 
derivatives in Eq. (IO) by spatial differences formed with reference to the finite- 
difference mesh. This will ordinarily be done by the simplest symmetrical or centered 
procedure, leading to spatial difference expressions that agree with their differential 
counterparts to second order in a uniform rectangular mesh and to first order other- 
wise. 

II I. DISCUSSION 

Although the tensor viscosity term arises from the time derivative, it may alter- 
natively be regarded as part of the convective flux. This is permissible because the 
difference expression 

tQ@ - CT - VQY (11) 



TENSOR VISCOSITY METHOD 15 

is a first-order difference approximation to Qu. Indeed, this interpretation is essential 
if one wants the difference equations to preserve the integral balances implied by the 
differential system (for example, the integral of the mass flux over a closed surface 
vanishes in steady state). Since the tensor viscosity term has been derived in con- 
servation (i.e., divergence) form, it lends itself naturally to the construction of con- 
servative difference schemes based on this interpretation. 

It is instructive, especially for purposes of comparison, to write out the explicit 
matrix form of T for the case of two-dimensional rectangular Cartesian coordinates 
(x9 Y>: 

(12) 

where u and v are respectively the x- and y-components of u. It is also possible to 
express the convective fluxes in both donor cell and interpolated donor cell differencing 
as difference approximations to expressions of the form (11). The donor cell form of 
T is 

T=$Al 

IulAx 
At 

0 
3 (13) 

where Ax and Ay are the spatial increments in the x and y directions. The interpolated 
donor cell form of T is 

T=&At ;J2 j. ( 1 (14) 

Note that interpolated donor cell differencing is equivalent to replacing the off- 
diagonal elements in Eq. (12) by zero. That this is not a good idea is suggested by the 
fact that it destroys the tensor invariance; the interpolated donor cell T, given by 
Eq. (14), clearly does not transform as a tensor. It was this observation that originally 
suggested to us the use of Eq. (12) instead. The fact that interpolated donor cell 
differencing in two dimensions is inherently unstable [6] is evidence that tensor 
invariance is not merely of aesthetic significance. The tensor invariance is also very 
convenient for constructing spatial differences; since the tensor viscosity term 
V * (T * VQ) is already a tensor-invariant differential term, it may be spatially 
differenced in exactly the same manner as the other terms in the equations. This is 
especially useful in an arbitrary nonrectangular mesh, or in finite-element formu- 
lations, where the appropriate forms for donor cell or interpolated donor cell fluxes 
are far from obvious. Indeed, one of the principal advantages of the TV method is 
that its implementation in an arbitrary mesh, or in generalized coordinates, is straight- 
forward. 

It must be emphasized, however, that the tensor invariance of the differential 
term V . (T * VQ) does not carry over to the difference scheme. The spatial differencing 
introduces anisotropy because the mesh has preferred directions. Thus, for example, 
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an axially symmetric problem in a rectangular mesh will exhibit deviations from axial 
symmetry (although these deviations are generally somewhat less with the TV method 
than with donor cell differencing). This problem is common to all difference schemes 
when the mesh does not share the symmetry of the problem. 

The fact that interpolated donor cell differencing in two dimensions is unstable 
has sometimes been overlooked, possibly because in practice the instability is mitigated 
by the presence of physical or numerical dissipative effects, and in addition it is 
localized in regions where the flow is primarily along a cell diagonal. Nevertheless, 
the scheme is unstable and hence unacceptable. Stability is restored by introducing 
the missing off-diagonal elements to obtain the TV method. A Fourier analysis of the 
TV method for the canonical test case (linear advection by a uniform time-independent 
velocity field in a uniform two-dimensional rectangular mesh) leads to the stability 
restriction 

At < (Bl + p2>-“(A” + 1622)1’2, (1% 

where /3, = / u //OX and ,f32 = 1 Y l/dy. When j ZI / = 0 this reduces to dt < Ax// u 1, 
the usual one-dimensional interpolated donor cell restriction. 

Stability is also restored by the use of full donor cell differencing, whose corre- 
sponding stability restriction is [2] 

At < <Pl + /32)-l. (16) 

This is always less restrictive than the TV condition (15) but never by more than a 
factor of 2112. However, this stability is achieved by introducing additional numerical 
damping and by doing further violence to the tensor invariance. Instead of increasing 
the off-diagonal elements in the appropriate manner, donor cell differencing leaves 
them zero and greatly increases the diagonal elements instead, Indeed, these elements 
exceed the corresponding TV elements by factors of Ox/l u j dt and Oy/l u 1 dt, which 
can be very large. Because of the excessive numerical smearing caused by these large 
diagonal elements, donor cell differencing is too inaccurate for many purposes. 
Although this is now widely recognized, donor cell differencing has remained in 
common use because of the absence of a more satisfactory method of comparable 
simplicity, such as the TV method. 

The artificial viscosity of a numerical scheme is of primary importance; it is usually 
defined with reference to the diffusional truncation errors of the difference scheme 
in the canonical test case mentioned above. Since the TV method cancels these very 
errors, it has no artificial viscosity in this sense, in contrast to donor cell differencing. 
However, this applies only to the transient and not to the steady state [lo]. In the 
steady state the tensor viscosity term can no longer be regarded as part of the time 
derivative, and therefore becomes an artificial viscous term in the equations. The 
magnitude of this term can be reduced by reducing At, which will change the steady- 
state solution, just as it does in the various second-order methods [I, 21. 

Although the truncation error on which the TV method is based is the critical one, 
the difference scheme of course contains other truncation errors. These errors may be 
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destabilizing, dispersive, or dissipative, and in general their magnitudes depend on 
local flow conditions. In some problems these errors can lead to irregular and/or 
marginally unstable solutions. To allow for this possibility it is advisable to insert a 
variable factor 01 into the right-hand side of Eq. (8). The nominal value cy = 1 cor- 
responds to exact cancellation of the critical convective truncation error. Larger 
values of 01 can be used to provide additional smoothing for cases in which smooth 
and stable solutions do not obtain with CC = 1. The introduction of oi does not alter 
the formal order of accuracy of the TV scheme, but it does affect the absolute accuracy; 
thus cx should be kept as close to unity as possible. 

We have obtained the form of the TV term by an argument based on Taylor series 
expansions. Such expansions are legitimate oniy when the field in question is suffi- 
ciently smooth. This is not always the case in inviscid flows, where the field variables 
or their low-order derivatives may be discontinuous. For many purposes, it is sufficient 
to represent such discontinuities numerically as relatively rapid but continuous 
transitions (e.g.. shock smearing [9]), in which case the TV method remains applicable 
(provided the zoning is fine enough). If it is necessary to represent discontinuities 
as such, then special techniques are required. 

IV. NUMERICAL EXAMPLE 

As a simple example we consider the solution of Eq. (1) in two dimensions, in the 
square region 0 < x, y < X. The velocity field is uniform with components 
u = z) = U,,; thus the flow is purely diagonal. The initial density in the region is 
uniform with the value p1 , and the boundary conditions are that p = pz on the inflow 
boundaries x = 0 and y = 0. The exact solution of this problem is an L-shaped 
step-function density wave, with density jump pI - pz , propagating diagonally into 
the region with speed 21jzU,, . 

Finite-difference numerical solutions to this problem were generated in a uniform 
rectangular xy mesh using both donor cell differencing and the TV method (with 
01 = 1). In both cases the problem parameters were 

p1 = 1.0, p2 = 2.0, 

u, = 1.0, dt = 0.2, 

Ax = Lly = 1.0, x = 18, 

and simple extrapolation outflow boundary conditions were used at x = X and 
y = X. Density contours at t = 4.0 for the two cases are shown in Fig. 1. The 
additional numerical smearing of the donor cell method is readily apparent. The 
density contours at the later time t = 8.0 are shown in Fig. 2. Between t = 4.0 
and t = 8.0 the width of the front (as measured by the distance between the H and 
L contour lines) has increased about 16 % in the TV case, while in the donor cell 
case it has increased about 41%. The sharp corner of the front is also being rounded 
much more severely by donor cell differencing than by the TV method. 
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FIG. 1. Density contours at t = 4.0 for donor cell (left) and tensor viscosity (right) cases. Contours 
are equally spaced between the L value (Pr = 1.1) and the H value (PN = 1.9). 

FIG. 2. Density contours at i = 8.0 for donor cell (left) and tensor viscosity (right) cases. Contours 
are equally spaced between the L value (pL = 1.1) and the H value (pi = 1.9). 

We are currently using the TV method in an Eulerian fluid dynamics code called 
APACHE [II], and have found it to give good results in a wide variety of 
test problems. In problems where large spatial gradients exist, it is sometimes necessary 
to use a value of 01 substantially greater than unity. Rarely, however, is a value so 
large as Ax/l 2.4 lmax At needed, and even then the associated damping is comparable 
to that of donor cell differencing only where the velocity is largest, and not in the 
rest of the mesh. 
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